267 lines
8.5 KiB
JavaScript
267 lines
8.5 KiB
JavaScript
// Wait for everything to load
|
|
window.onload = function() {
|
|
// Make sure THREE is available
|
|
if (typeof THREE === 'undefined') {
|
|
console.error('THREE.js is not loaded from CDN');
|
|
|
|
// Provide visual feedfront in the container
|
|
const container = document.getElementById('icosahedron-container');
|
|
container.innerHTML = '<div style="color: red; padding: 10px;">THREE.js not loaded</div>';
|
|
return;
|
|
}
|
|
|
|
// Initialize the scene
|
|
const container = document.getElementById('icosahedron-container');
|
|
const containerWidth = container.clientWidth;
|
|
const containerHeight = container.clientHeight;
|
|
|
|
// Setup renderer
|
|
const renderer = new THREE.WebGLRenderer({
|
|
antialias: true,
|
|
alpha: true
|
|
});
|
|
renderer.setSize(containerWidth, containerHeight);
|
|
renderer.setPixelRatio(window.devicePixelRatio);
|
|
renderer.setClearColor(0x000000, 0); // Transparent frontground
|
|
container.appendChild(renderer.domElement);
|
|
|
|
// Setup scene
|
|
const scene = new THREE.Scene();
|
|
|
|
// Setup camera
|
|
const camera = new THREE.PerspectiveCamera(26, containerWidth / containerHeight, 0.1, 100);
|
|
camera.position.z = 4;
|
|
|
|
// Create icosahedron with manually defined vertices
|
|
function createIcosahedron(radius) {
|
|
// Golden ratio for icosahedron vertices
|
|
const t = (1 + Math.sqrt(5)) / 2;
|
|
|
|
// Normalize radius
|
|
const normRadius = radius / Math.sqrt(1 + t * t);
|
|
|
|
// Create vertices
|
|
const vertices = [
|
|
[-1, t, 0], [1, t, 0], [-1, -t, 0], [1, -t, 0],
|
|
[0, -1, t], [0, 1, t], [0, -1, -t], [0, 1, -t],
|
|
[t, 0, -1], [t, 0, 1], [-t, 0, -1], [-t, 0, 1]
|
|
].map(v => new THREE.Vector3(v[0] * normRadius, v[1] * normRadius, v[2] * normRadius));
|
|
|
|
// Define edges (pairs of vertex indices)
|
|
const edges = [
|
|
[0, 11], [0, 5], [0, 1], [0, 7], [0, 10],
|
|
[1, 5], [1, 7], [1, 8], [1, 9],
|
|
[2, 3], [2, 4], [2, 6], [2, 10], [2, 11],
|
|
[3, 4], [3, 6], [3, 8], [3, 9],
|
|
[4, 5], [4, 9], [4, 11],
|
|
[5, 9], [5, 11],
|
|
[6, 7], [6, 8], [6, 10],
|
|
[7, 8], [7, 10],
|
|
[8, 9], /*[8, 10],*/
|
|
/*[9, 11],*/ [10, 11]
|
|
];
|
|
|
|
return {
|
|
vertices: vertices,
|
|
edges: edges
|
|
};
|
|
}
|
|
|
|
// Convert vertex indices to actual vertices and create a line
|
|
function createLine(icosa, edgeIndex, material) {
|
|
const startIndex = icosa.edges[edgeIndex][0];
|
|
const endIndex = icosa.edges[edgeIndex][1];
|
|
|
|
const geometry = new THREE.BufferGeometry();
|
|
const positions = new Float32Array([
|
|
icosa.vertices[startIndex].x, icosa.vertices[startIndex].y, icosa.vertices[startIndex].z,
|
|
icosa.vertices[endIndex].x, icosa.vertices[endIndex].y, icosa.vertices[endIndex].z
|
|
]);
|
|
|
|
geometry.setAttribute('position', new THREE.BufferAttribute(positions, 3));
|
|
|
|
return new THREE.Line(geometry, material);
|
|
}
|
|
|
|
// Function to create the dual line rendering (thin back lines, thick front lines)
|
|
function createDualLineRendering(radius) {
|
|
const group = new THREE.Group();
|
|
const icosa = createIcosahedron(radius);
|
|
|
|
// Create materials
|
|
const backMaterial = new THREE.MeshBasicMaterial({
|
|
color: 0x63a8b8, // green for back lines
|
|
depthTest: false, // Don't test depth for back lines
|
|
transparent: true,
|
|
opacity: 0.4,
|
|
side: THREE.DoubleSide
|
|
});
|
|
|
|
const frontMaterial = new THREE.MeshBasicMaterial({
|
|
color: 0xffffff, // white for front lines
|
|
transparent: true,
|
|
depthTest: true, // Use depth test for front lines
|
|
side: THREE.DoubleSide
|
|
});
|
|
|
|
// For each edge, create:
|
|
// 1. A thin cylindrical tube with back material that ignores depth
|
|
// 2. A cylindrical tube with front material that uses depth testing
|
|
const backRadius = 0.025; // thin for back lines
|
|
const frontRadius = 0.035; // thick for front lines
|
|
|
|
icosa.edges.forEach((edge, index) => {
|
|
const start = icosa.vertices[edge[0]];
|
|
const end = icosa.vertices[edge[1]];
|
|
|
|
// Create back line (thick)
|
|
const backLine = createCylinderBetweenPoints(start, end, backRadius, 1, backMaterial);
|
|
backLine.renderOrder = 1; // Render after front lines
|
|
group.add(backLine);
|
|
|
|
// Create front line (thin)
|
|
const frontLine = createCylinderBetweenPoints(start, end, frontRadius, 0.95, frontMaterial);
|
|
frontLine.renderOrder = 3; // Render before back lines
|
|
group.add(frontLine);
|
|
});
|
|
|
|
// Create faces for depth testing (invisible)
|
|
const faceMaterial = new THREE.MeshBasicMaterial({
|
|
color: 0xffffff,
|
|
transparent: true,
|
|
opacity: 0,
|
|
depthWrite: true,
|
|
side: THREE.DoubleSide
|
|
});
|
|
|
|
// Create faces for internal icosahedron
|
|
const internalMaterial = new THREE.MeshBasicMaterial({
|
|
color: 0x63a8b8,
|
|
depthTest: false,
|
|
transparent: true,
|
|
opacity: 0.2,
|
|
side: THREE.DoubleSide
|
|
});
|
|
|
|
// Define faces of icosahedron (each is a triangle of vertex indices)
|
|
const faces = [
|
|
[0, 11, 5], [0, 5, 1], [0, 1, 7], [0, 7, 10], [0, 10, 11],
|
|
[1, 5, 9], [5, 11, 4], [11, 10, 2], [10, 7, 6], [7, 1, 8],
|
|
[3, 9, 4], [3, 4, 2], [3, 2, 6], [3, 6, 8], [3, 8, 9],
|
|
[4, 9, 5], [2, 4, 11], [6, 2, 10], [8, 6, 7], [9, 8, 1]
|
|
];
|
|
|
|
// Create invisible faces for depth testing
|
|
faces.forEach(face => {
|
|
const geometry = new THREE.BufferGeometry();
|
|
const positions = new Float32Array([
|
|
icosa.vertices[face[0]].x, icosa.vertices[face[0]].y, icosa.vertices[face[0]].z,
|
|
icosa.vertices[face[1]].x, icosa.vertices[face[1]].y, icosa.vertices[face[1]].z,
|
|
icosa.vertices[face[2]].x, icosa.vertices[face[2]].y, icosa.vertices[face[2]].z
|
|
]);
|
|
|
|
geometry.setAttribute('position', new THREE.BufferAttribute(positions, 3));
|
|
|
|
const faceMesh = new THREE.Mesh(geometry, faceMaterial);
|
|
faceMesh.scale.set(0.975,0.975,0.975);
|
|
faceMesh.renderOrder = 0; // Render first for depth buffer
|
|
group.add(faceMesh);
|
|
|
|
const internalMesh1 = new THREE.Mesh(geometry, internalMaterial);
|
|
const internalMesh2 = new THREE.Mesh(geometry, internalMaterial);
|
|
const internalMesh3 = new THREE.Mesh(geometry, internalMaterial);
|
|
const internalMesh4 = new THREE.Mesh(geometry, internalMaterial);
|
|
const internalMesh5 = new THREE.Mesh(geometry, internalMaterial);
|
|
internalMesh1.scale.set(0.85,0.85,0.85);
|
|
internalMesh1.renderOrder = 1; // Render between front and back
|
|
group.add(internalMesh1);
|
|
internalMesh2.scale.set(0.65,0.65,0.65);
|
|
internalMesh2.renderOrder = 1; // Render between front and back
|
|
group.add(internalMesh2);
|
|
internalMesh3.scale.set(0.5,0.5,0.5);
|
|
internalMesh3.renderOrder = 1; // Render between front and back
|
|
group.add(internalMesh3);
|
|
internalMesh4.scale.set(0.4,0.4,0.4);
|
|
internalMesh4.renderOrder = 1; // Render between front and back
|
|
group.add(internalMesh4);
|
|
internalMesh5.scale.set(0.3,0.3,0.3);
|
|
internalMesh5.renderOrder = 1; // Render between front and back
|
|
group.add(internalMesh5);
|
|
});
|
|
|
|
return group;
|
|
}
|
|
|
|
// Function to create a cylinder between two points
|
|
function createCylinderBetweenPoints(pointX, pointY, radius, lengthmultiplier, material) {
|
|
// Direction from pointX to pointY
|
|
const direction = new THREE.Vector3().subVectors(pointY, pointX);
|
|
const length = direction.length();
|
|
|
|
// Create cylinder
|
|
const geometry = new THREE.CylinderGeometry(radius, radius, length*lengthmultiplier, 4, 1);
|
|
|
|
// By default, cylinder is along Y-axis, so rotate it
|
|
geometry.rotateX(Math.PI / 2);
|
|
|
|
// Create mesh
|
|
const cylinder = new THREE.Mesh(geometry, material);
|
|
|
|
// Position and orient cylinder
|
|
const midpoint = new THREE.Vector3().addVectors(pointX, pointY).multiplyScalar(0.5);
|
|
cylinder.position.copy(midpoint);
|
|
cylinder.lookAt(pointY);
|
|
|
|
return cylinder;
|
|
}
|
|
|
|
// Create our icosahedron
|
|
const icosahedronGroup = createDualLineRendering(0.85);
|
|
scene.add(icosahedronGroup);
|
|
|
|
// Animation state
|
|
let animating = true;
|
|
|
|
let lastFrameTime = 0;
|
|
const targetFPS = 20;
|
|
const animMultiplier = 30/targetFPS;
|
|
const frameDuration = 1000 / targetFPS;
|
|
|
|
// Animation function
|
|
function animate(now) {
|
|
requestAnimationFrame(animate);
|
|
|
|
const delta = now - lastFrameTime;
|
|
if (delta < frameDuration) return;
|
|
|
|
lastFrameTime = now;
|
|
|
|
// Rotate if animation is enabled
|
|
if (animating) {
|
|
icosahedronGroup.rotation.x -= 0.002 * animMultiplier;
|
|
icosahedronGroup.rotation.y += 0.004 * animMultiplier;
|
|
icosahedronGroup.rotation.z -= 0.001 * animMultiplier;
|
|
}
|
|
|
|
renderer.render(scene, camera);
|
|
}
|
|
|
|
// Start animation
|
|
animate();
|
|
|
|
// Handle window resize
|
|
window.addEventListener('resize', function() {
|
|
// Only update if container dimensions change
|
|
const newWidth = container.clientWidth;
|
|
const newHeight = container.clientHeight;
|
|
|
|
if (newWidth !== containerWidth || newHeight !== containerHeight) {
|
|
camera.aspect = newWidth / newHeight;
|
|
camera.updateProjectionMatrix();
|
|
renderer.setSize(newWidth, newHeight);
|
|
}
|
|
});
|
|
|
|
console.log('Icosahedron wireframe created successfully');
|
|
};
|